Processing of collagen gels to create in vitro cell growth matrix without damage to the collagen native structure
نویسنده
چکیده
This preliminary work explores a technique for processing collagen gels to provide a structured matrix support for cell growth and other tissue engineering applications without using cyto-toxic photo-initiators. Collagen gels can be structured by techniques similar to those of rapid manufacturing and retain the fibril structure of native collagen. Incorporation of alpha-modified minimal essential medium (MEM) in the collagen solution improved the rate of gelation in a cell-friendly way. Local gelation of a collagen solution formulated with alpha-modified MEM can be achieved by exposure to radiation from a remote incandescent lamp source indicating that it may be possible to prepare structured gels by lithographically based rapid manufacturing processes. Exposure of the alpha-modified MEM collagen solution to the radiation also increased the thickness of the collagen fibrils formed during the gelation process to create a more structured gel. Methyl blue staining, scanning electron microscope (SEM), and differential scanning calorimetry (DSC) experiments confirmed the collagen was not denatured, i.e. the native structure of collagen was retained.
منابع مشابه
The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth
Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...
متن کاملتهیه پودر ماتریکس خارج سلولی از بافت چربی جهت مهندسی بافت
Background: With the aim of regenerating healthy tissues, different tissue engineering strategies pointed to extracellular matrix (ECM)-based scaffolds in tissue engineering and regenerative medicine and wound healing. It is a multidisciplinary science works to create biocompatible scaffolds with perfect physical parameters, mechanical integrity and high porosity to promote cell growth, migrati...
متن کاملProtocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration.
It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(...
متن کاملI-15: Survival and Development Competenceof Buffalo Preantral Follicles Using Three DimensionalCollagen Gel Culture System
Background: The aim of the present study was to develop a three-dimensional (3D) collagen gel culture system for the in vitro growth and survival of buffalo preantral follicles with or without growth factors. Materials and Methods: Buffalo ovaries were collected from a local abattoir and preantral follicles were isolated through microdissection. Isolated preantral follicles were put either in c...
متن کاملCell migration through three-dimensional gels of native collagen fibres: collagenolytic activity is not required for the migration of two permanent cell lines.
Three dimensional gels of native type I collagen fibres have been used as a substratum for the growth and migration of Chinese hamster ovary cells (fibroblastoid cell line) and RPMI-3460 melanoma cells (tumorigenic cell line from Syrian hamster). Quantitative data concerning the migration of these cells from the gel surface into the 3-dimensional collagen gel matrix have been obtained. The migr...
متن کامل